Литература
Aghabozorgi, S., Shirkhorshidi, A. S., & Wah, T. Y. (2015). Time-series clustering - A decade review. Information Systems, 53, 16-38.
Arabie, P., Hubert, L., & Soete, G. (1996). Clustering and classification. Biometrics, 53, 1182.
Bickel, D. (2003). Robust and efficient estimation of the mode of continuous data: The mode as a viable measure of central tendency. Journal of Statistical Computation and Simulation, 73, 899-912.
Bland, M. (2015). Estimating mean and standard deviation from the sample size, three quartiles, minimum, and maximum. International Journal of Statistics in Medical Research, 4, 57-64.
Campos, V., Bueno, C., Brancher, J., Matsunaga, F., & Negrao, R. (2015). Knowledge discovery using an integration of clustering and classification to support decision-making in e-commerce. Advances in Economics and Business, 3, 329-336.
Carlsson, G., & Mémoli, F. (2010). Classifying clustering schemes. Foundations of Computational Mathematics, 13, 221-252.
Ceri, S., Bozzon, A., Brambilla, M., Della Valle, E., Fraternali, P., & Quarteroni, S. (2013). Classification and clustering. In Data-Centric Systems and Applications (pp. 39-56).
Dalal, M., & Harale, N. (2011). A survey on clustering in data mining. In Proceedings of the International Conference on Advances in Computing and Artificial Intelligence (pp. 559-562).
Dilts, D. M., Khamalah, J., & Plotkin, A. (1995). Using cluster analysis for medical resource decision making. Medical Decision Making, 15, 333-346.
Elashoff, R., Lee, J., & Afifi, A. (1989). A note on confidence limits for quartiles with right censored data. Statistics in Medicine, 8(10), 1269-1276.
Everitt, B. (1974). Cluster analysis. Quality and Quantity, 14, 75-100.
Fang, C., & Liu, H. (2021). Research and application of improved clustering algorithm in retail customer classification. Symmetry.
Freund, J. E., & Perles, B. (1987). A new look at quartiles of ungrouped data. The American Statistician, 41, 200-203.
Gonzales, V. A., & Ottenbacher, K. J. (2001). Measures of central tendency in rehabilitation research: What do they mean? American Journal of Physical Medicine & Rehabilitation, 80, 141-146.
Hoaglin, D., Iglewicz, B., & Tukey, J. (1986). Performance of some resistant rules for outlier labeling. Journal of the American Statistical Association, 81, 991-999.
Holt, M. M., & Scariano, S. M. (2009). Mean, median and mode from a decision perspective. Journal of Statistics Education, 17.
Hüllermeier, E. (2010). Uncertainty in clustering and classification. In Combining Soft Computing and Statistical Methods in Data Analysis (pp. 16-19).
Jain, A. K. (2008). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31, 651-666.
Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys, 31, 264-323.
Jankowski, K., & Flannelly, K. (2015). Measures of central tendency in chaplaincy, health care, and related research. Journal of Health Care Chaplaincy, 21, 39-49.
Langford, E. (2006). Quartiles in elementary statistics. Journal of Statistics Education, 14.
Ma, X., & Dhavala, S. (2018). Hierarchical clustering with prior knowledge. ArXiv.
Mangiameli, P., Chen, S. K., & West, D. (1996). A comparison of SOM neural network and hierarchical clustering methods. European Journal of Operational Research, 93, 402-417.
McGreevy, K., Lipsitz, S., Linder, J., Rimm, E., & Hoel, D. (2009). Using median regression to obtain adjusted estimates of central tendency for skewed laboratory and epidemiologic data. Clinical Chemistry, 55(1), 165-169.
Milligan, G. W., & Hirtle, S. C. (2012). Clustering and classification methods. In Handbook of Psychology: Research Methods in Psychology (pp. 165-186).
Nagar, P. (2014). Cluster analysis. In Handbook of Research on Advanced ICT Integration for Governance and Policy Modeling (pp. 123-159).
Press, S. J. (2006). Reducing subjectivity in the likelihood. Journal of Data Science.
Reddy, T. (2011). Classification and clustering methods. In Handbook of Statistics: Vol. 28. Epidemiology and Medical Statistics (pp. 231-251).
Rosenbaum, P. (1999). Reduced sensitivity to hidden bias at upper quantiles in observational studies with dilated treatment effects. Biometrics, 55.
Sese, J., & Morishita, S. (2004). Itemset classified clustering. In Data Mining and Knowledge Discovery (pp. 398-409).
Stanovich, K. E., & Stanovich, P. J. (н.д.). A Framework for Critical Thinking, Rational Thinking, and Intelligence. В Refining Mind (195-210).
Subramani, J., & Kumarapandiyan, G. (2012). Modified ratio estimators for population mean using function of quartiles of auxiliary variable. Bonfring International Journal of Industrial Engineering and Management Science, 2, 19-23.
Veni, C. V. K., & Rani, T. (2017). Quartiles based UnderSampling(QUS): A simple and novel method to increase the classification rate of positives in imbalanced datasets. 2017 Ninth International Conference on Advances in Pattern Recognition (ICAPR), 1-6.
Wilcox, R., Erceg-Hurn, D. M., Clark, F., & Carlson, M. (2014). Comparing two independent groups via the lower and upper quantiles. Journal of Statistical Computation and Simulation, 84, 1543-1551.
Xie, W.-B., Lee, Y.-L., Wang, C., Chen, D., & Zhou, T. (2019). Hierarchical clustering supported by reciprocal nearest neighbors. ArXiv.